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Nonreciprocal and Reciprocal Complex
and Backward Waves in Parallel Plate

Waveguides Loaded with a Ferrite
Slab Arbitrarily Magnetized

Ricardo Marqués, Francisco L. Mesa, and Manuel Horno, Member IEEE

Abstract— This paper presents a rigorous and systematic
method of analysis of the electromagnetic wave propagation
in parallel plate waveguides with a multilayered bianisotropic
medium. The method is applied to the numerical study of parallel
plate waveguides with a multilayered medium including lossless
ferrite layers magnetized at an arbitrary direction. Both the
propagation constant and the transmitted power are computed.
Backward, i.e., power flux in opposite direction as phase velocity,
and nonreciprocal complex modes have been found to be an
essential part of the model spectrum of the structures analysed
here. A detailed investigation has been carried out about the
parameters related to the appearance of these modes.

I. INTRODUCTION

N THE LAST four decades, the study of the interaction

of microwaves with ferrites inside waveguides has steadily
increased owing to its interest in the microwave technology.
Propagation in planar ferrite-loaded structures for different dc
magnetic bias orientation has been widely studied by means
of a magnetostatic approach (eg., [1] and references therein).
There are also some works in the literature dealing with the
electromagnetic wave propagation in arbitrarily magnetized
homogeneous ferrites between two perfectly conducting plates
(see [2] and references therein) and some other works dealing
with multilayered ferrite-loaded planar waveguides magne-
tized at a direction either parallel or orthogonal to the direction
of propagation [3]-[5]. However, to the authors’ knowledge,
there is not any work devoted to the full-wave analysis of
electromagnetic propagation in multilayered ferrite-loaded par-
allel plate waveguides arbitrarily magnetized. The relevance
of an electromagnetic analysis, even if the normalized phase
constant is high enough to apply the magnetostatic approach,
has been shown in [6].

Another topic widely analyzed in the literature is the
microwave propagation along microstrip or microslot-like
transmission lines on ferrite-loaded substrates magnetized at
different directions. Specifically, [7], [8] have analyzed
electromagnetic propagation in microstrip-like structures
printed on a general anisotropic substrate (including a ferrite
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slab with an arbitrary dc biasing magnetic field). These
structures as well as most guide elements used in MIC/MMIC
technology lines or image guides can be subdivided in regions
that can be viewed as multilayered parallel plate waveguides.
The knowledge of the different modes propagating at an
arbitrary direction in these parallel plate waveguides is a very
valuable point to be considered in the analysis of the MIC
and MMIC lines. For example, the presence of leaky waves
can be predicted from the knowledge of the modal spectrum
of the different parallel plate subregions in which the line is
subdivided [9}, [10].

When magnetized ferrite layers are present in lines, the
modal spectrum of the different parallel plate waveguides
strongly depends on the direction of wave propagation in
the plane of the structure (the plane defined by the planar
nature of the structure). Notice that the direction fixed by the
dc magnetizing field H determines a privileged direction in
these waveguides on the contrary to what happens in nonmag-
netized waveguides. Thus, the analysis of wave propagation
at an arbitrary direction with respect to the direction fixed by
H,, can be equally made by analyzing the wave propagation
along a fixed direction but with the dc biasing field arbitrarily
oriented. Therefore, the analysis of the modal spectrum of a
ferrite loaded parallel plate waveguide, with an arbitrary dc
magnetic biasing field, should be an essential previous step
for the study of the propagation along fin-line and microstrip-
like transmission lines printed in these waveguides, even in
case the dc magnetization is either normal or parallel to the
direction of propagation imposed by the metallizations.

In this paper, we present a systematic method to obtain
the complete modal spectrum of a multilayered parallel plate
waveguide arbitrarily magnetized, or in other words, the modes
propagating at an arbitrary direction inside a parallel plate
waveguide with a fixed dc magnetic bias field. The dispersion
relation is obtained by following the basic ideas previously
developed by the authors in [11] to compute the spectral
Green’s function of a planar structure with a multilayered
bianisotropic medium. In this way, the dispersion relation is
expressed in terms of solutions to certain equation that are
shown to be the complex zeroes of an analytical function.
This fact makes it possible to apply conventional and very
efficient integral methods [12] to obtain all the roots of the
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Fig. 1. Cross-section of a multilayered parallel plate waveguide.

dispersion equation in a given region of the complex plane.
Transmitted power through each layer is also computed by
using an analytical algorithm that is developed here.

The numerical analysis of the above structures has revealed
the presence of certain unusual types of modes, namely non-
reciprocal complex wave modes. Reciprocal complex modes
have been reported in different shielded dielectric loaded
waveguides such as circular waveguides containing an axial
dielectric rod [14], rectangular image guides [15], fin-lines
[16], and in microstrip lines [17], [18]. These modes also
appear in waveguides homogeneously filled with anisotropic
media [19]. The existence of nonreciprocal complex modes in
transversely magnetized ferrite-loaded fin-lines was reported
in [20].

More recently, the authors have shown that all modes that
do not carry a net average power flux must be complex if
they are also nonreciprocal and propagate along a transversely
magnetized waveguide with an arbitrary cross-section [21].
In the present paper, the nonreciprocal complex modes are
deeply analyzed in order to establish their main character-
istics (frequency range and mechanism of appearance and
disappearance, transmitted power, mode coupling, etc).

II. ANALYSIS

A. Characteristic Equation

Consider the multilayered parallel plate waveguide shown
in Fig. 1. The layers are assumed to be made of arbitrary
bianisotropic materials, including in this way: dielectric or
magnetic intrinsic anisotropy, optical activity, and magne-
tized ferrite and/or semiconductor—namely, gyrotropic layers.
The unique restriction is that the media must show a linear
electromagnetic behavior, i.e., the constitutive electromagnetic
properties of each layer can be described by means of a 6 X 6
tensor:

o],

[g] =M],- [1]—31] [M], = {[[5']11 [mj 6x6)

with [¢]; and [p], being the dielectric permittivity and the
magnetic permeability, respectively, and [p],, [p']; the optical
activity tensors.

Let a new structure be formed by removing the upper
conducting half plane of the structure in Fig. 1 and impressing
a tangential electric field B} = EY exp(jwt — jk.z — jk.)

M
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at this upper interface (k. and k. stand for the complex prop-
agation constants in the +z and +z direction, respectively,
and w for the angular frequency; the time-dependence will
not be written henceforth). It is followed from the uniqueness
theorem that the electromagnetic field between upper and
the lower interfaces of this new configuration is completely
determined provided the tangential electric field at the upper
boundary is imposed (the lower interface being a perfect
conducting plate). Specifically, once the tangential magnetic
field on the lower plane has been obtained, the surface currents
on this conducting plate are determined. Owing to the linear
properties of the media, a linear relation has to exist between
the tangential electric field at the upper plane £, EY, and the
current on the lower conducting plane J!, J!, that is

Tio = [L(kss ke, w)] - Eig. @

Note that once (2) is stated, the characteristic equation can be
readily obtained. This is made by requiring that a lower current
surface do exist (J ;0 # 0), if a null upper electric tangential
field (E}, = 0) is imposed. The characteristic equation can
then be written by means of the following implicit relation:

G)

A direct comparison of (2) with expression (4) in [11]
shows that the [L] matrix appearing in (2) is in fact
the [L(k., kz,w)|g gy, matrix defined in [11] in case the
subscripts nx and ngy1 (see [11, Fig. 3 (c)]) stand for
the lower and upper planes of the current configuration,
respectively. Hence, the [L] matrix of (2) can be computed
following the general method developed in [11].

Fixed the value of w, a pair of k,,k, satisfying (3) cor-
responds to a plane wave propagating in the parallel plate
waveguide with a wave vector k = k,a, + k,a,. Notice that
the wave-vector k = k,a, + k.a, does not always define a
direction in the (z — z) plane since the quantities &, k,, are in
general complex. Only in few cases (for example when both
k. and k, are real) k does define a direction in the (z — 2)
plane (k = keag; ae is a unitary vector in the (z — z) plane).
Only in these cases the fields do not vary in the direction
perpendicular to a¢ and a, (defined by a,, = ay X a¢). This
type of waves will be called in the following uniform modes
since they are uniform in a direction that is perpendicular to
the propagation one. Although in the numerical computations
we restrict ourselves to the uniform modes defined above, the
method developed here is not restricted by this limitation.

det([L(kz,km,w)]_1> —0.

B. Solution of the Characteristic Equation

For fixed values of w and k,, the complex function f(k,) =
det([L(k.; ks, w)] ") appearing in (3) is an analytic function
in the complex k,-plane. This relevant feature can be deduced
from the fact that, any pole of the above function must be
related to an electromagnetic field configuration in which both
a, X F and a, x H vanish at the lower plane of Fig. 1, with a
nonzero impressed tangential electric field at the upper plane
(after the conducting plate at this plane has been removed).
Nevertheless, it can be shown that this field configuration is not
possible if the layers are made of lincar media and have finite
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thickness (see Appendix A). Therefore, the above function
cannot have poles in the entire complex plane.

Being f(k,) an analytic function, it is possible to apply a
contour integral method to search for the zeroes of (3) in the
complex k, plane. The method used in this work is base on
the well known theorem of the theory of analytical functions
which states that, if f(k,) is an analytical function, and C
is a closed curve in the complex k, plane that does not pass
through a zero of f(k,), then

2 Jo 7 f(ks) @

/ v

=1
where k,,i(i = 1, - -,v) are all the zeros of f(k,) that lie in
the region enclosed by the curve C.

Starting from (4) it is possible to develop a system-
atic method for searching all the zeros of f(k.,) =
det([L(k.; ks w)] ") in a given region of the complex k,-
plane. A general description of this method can be found
in [12], nevertheless, we will give here a brief sketch of
the specific procedure followed by us (more details about
the implementation of the method are given in [13]). The
contour integration is chosen to be a circumference and the
numerical integration is made in terms of the Gauss—Legendre
quadratures (a forty-points quadrature provides sufficient
accuracy). We begin by computing (4) for N = 0, obtaining in
this way the total number of zeros v within the region enclosed
by C. If v > 4 the region is subdivided in subregions up
to v < 4. In this case, the integrals in (4) are computed for
N =1, .-+, v to obtain a set of v equations of order v. The roots
of these equations are the zeros of f(k,), k,4,¢ =1,---,v
in the considered subregion. These roots can be algebraically
obtained if v < 4. The CPU time employed in the forty
evaluations of f(k,) = det({[L(k.;ks,w)]”") to compute the
Gauss—Legendre quadrature, is about 200 milliseconds in a
Vax-6410 machine.

If k,, is a zero of f(k,) = det([L(kz;km,w)]—l) for a
given k,, the pair (k,;,k,) defines a uniform mode prop-
agating along the waveguide. Nevertheless, if we are only
interested in obtaining the complex propagation constants kg
of the different uniform modes that can propagate along the
structure at an arbitrary direction, ag = coséa, + sinéa,, in
the (z — z) plane (namely, at an angle £ with respect to the
positive z direction), we only need to compute the zeros of
Jf(ky) = det([L(kZ;O,w)]“l) (with k, = 0), after the media
and the dc biasing fields in Fig. 1 are subjected to a rotation
by angle —¢ about the z-axis.

C. Power Computation

The average powers per unit length transmitted in the  and
z direction through each layer, ¢, of the structure shown in
Fig. 1, PQ) and PS) , are given by

N1 b
PO = —R /h (E-Hy — E,H;), dy ®)

IR N

h.
P =Lm / (E,H? — E.H), dy ©)
h

i—1
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(superscript * indicates complex conjugate and R real part).
The computation of these quantities in a bianisotropic layer

is made by following in certain way the method developed in

[22]. We start from Maxwell equations that can be written in

each layer as:
RIS s el W

™
with [S] being
0 k. £
[Sliaxay = | =dk= 0 —gks | . (8)

The second- and fifth-row equations in(7) are algebraic equa-
tions, and they can be used to eliminate E, and H, in
terms of the remaining field components. Once the expressions
of Ey and H, have been found as linear functions of the
other components, they can be introduced in (5) and (6) to
rewrite the integrands as bilinear functions of X;; X7 =
[Eg, E., Hy, H,), (superscript T stands for transpose), that is

(E.H; - E,H}), = X[ -[N"], - X} ©)

(BE,H - B.H}), = X7 -[N°];- X7 (10)
where [IN?]; and [IN®); are (4 x 4) matrices that are explicitly
written in Appendix B. Following the general treatment in
[11], solutions for X ;(y) are given by

Xi(y) = exp(jw[Ql;y) - Xi(hi-1)

(IQ); is a (4 x 4) matrix defined in [11]). Once k, and k.
have been determined, X ;(y = 0) is readily obtained from
(2) with E}, = 0 and the different X;(y) computed using
(11). Substituting now (9), (10), and (11) in (5) and (6), the
transmitted power P is given by

hi—1 <y < h; (11)

. 1 he . z,x
PO =39t [ (X exp(wlQlTy) - N,
hao1

- exp(~3w[Ql7y) - X (humv)) dy
(12)

We first diagonalize [@Q)]; in order to compute (12), that is:
‘ (13)

with [D]; being the diagonalization matrix of [Q]; and
[A] a diagonal matrix whose elements are A}, =
A6ki(AL, k=1, -,4 stand for the eigenvalues of matrix
[Q]5). If (13) is now substituted in (12), ’Pé'% can be rewritten,
after some manipulations, as

0= lgld
Pz,m_zm{wz

k.l

: [1 _ exp{jw (,\;'c - (A;‘)*) }hi] } (14)

i
Ot

A= ()
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Fig. 2. Cross-section of a three ferrite-dielectric layer parallel-plate wave-
guide.

where

ai, = YiMg, (V). (15)

Y{ is the kth component of the four component vector

Y'=[D]; Xi(hizy), (16)

and Mj , the k,l elements of the (4 x 4) matrix

[M]; = [D; - [N*?); - [D]; .

k3

17

In numerical computations, the power flux has been normal-
ized assuming the z-component of surface current density to
be 1 mA/mm.

III. NUMERICAL RESULTS

The method of analysis developed in the previous sections
is applied in this section to the study of the propagation
of uniform modes in ferrite-loaded parallel plate wave-
guides magnetized at an arbitrary direction. As was pointed
out in Section II-A, the present method is not restricted to
this limitation. The specific structure to be analyzed is a
three-layer parallel plate waveguide filled with a composite
ferrite-dielectric medium (see Fig. 2). The losses and the
exchange interaction effects are assumed to be negligible
in the ferrite layer. The dielectric layer is also assumed
lossless. These assumptions are made to emphasize the effects
of the external magnetization field and to separate these
effects from other possible ones (intrinsic anisotropy, exchange
interactions, magnetic, or dielectric losses, etc.). Nevertheless,
all these effects can be incorporated in the explicit expression
of the magnetic permeability tensor by using the different
models developed in the literature. The direction of the internal
dc magnetization, Hg, of the ferrite layer is defined by the
spherical ¢ and ¢ angles. The 1] tensor of the ferrite layer is
assumed to be the Polder tensor [1] for this direction of the dc
biasing field. Notice that the internal dc magnetic field does
not correspond in general to the external dc magnetizing field,
except a few particular configurations (see [1] and references
therein).

As was mentioned above, the numerical computations have
been restricted to the analysis of the so defined uniform modes
(i.e., waves having a wave vector given by k = k,a,+kza, =
keag). This fact limits the possible complex values of k,
and k, to those satisfying some of the following conditions
(¥ indicates imaginary part): 1) Fk./Fk. = Rk./RE.,
2) Rk, = 0,R8k, = 0 or Fk, = 0,Fk, = 0, and 3)
kr = 0,k, # 0 or k, = 0,k, # 0. The propagation
constants of these modes for an arbitrary dc magnetization
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are computed by following the procedure outlined at the
end of Section III-B. This procedure makes it possible to
reduce the analysis of the aforementioned cases to the analysis
of waves propagating along the +z-direction (k, = 0) with
different orientations of the internal dc biasing field. In this
case k, = B — ja, with 3 being the phase constant and
« the attenuation constant. The main reasons to restrict our
numerical investigations to uniform modes are simplicity and
the relevant information provided by this type of modes.
A good insight in the microstrip or microslot transmission
lines properties can be obtained from the analysis of the
uniform modes propagating along the different parallel plate
waveguides in which the transmission line can be subdivided.
For example, the allowed k-band for the lateral nonradiating
regime of a transmission line (at a given frequency) can be
determined from this analysis. Notice also that in more general
cases, it does not seem to be easy to plot the four quantities
that determine the complex wave vector (k = k,a, + kya,)
so that its physical interpretation becomes apparent. Finally,
the theoretical interest itself of the uniform modes propagation
characteristics justifies, in our opinion, its specific analysis.
Before analyzing particular structures, we have exhaustively
checked our numerical results with those available in the
literature. As an example, we have compared our results
with those provided in [23], Fig. 2. Our numerical data have
been computed assuming a very distant shielding conducting
plate over the structure analyzed in [23]. The internal dc
magnetizing field is fixed at two different orientations (6 =
90°,¢ = 45° and § = 90°,¢ = 0°). The frequency depen-
dence of the propagation constants of the fundamental mode is
depicted in Fig. 3 regarding (42} and (—z) wave propagation.
Some of electromagnetic data presented in [23, Fig. 2] when
¢ = £45°,4£90° (¢ = 45°,0° in our notation) are reproduced
in Fig. 3 (marked by the circles) as well as the magnetostatic
limit results (dotted lines). The magnetostatic data have been
obtained following the theory reported in [24] for the ¢ = 0°
case. Note the good agreement between our data and the elec-
tromagnetic data of [23] at frequencies below about 4.2 GHz
in the ¢ = 0° case. Our results for frequencies above 4.2 GHz
clearly show how the mode depicted in [23, Fig. 2] is in fact
the superposition of two modes (a forward electromagnetic
wave (FEW) and a backward magnetostatic wave (BMW))
which gives rise to a nonreciprocal complex mode above
4.2 GHz. Power computations have been accomplished to
suppott these considerations. Specifically, for complex modes,
it has been verified that power flux in dielectric layers occurs in
the direction of phase propagation. In ferrite layers, the power
flux is opposite to the direction of phase propagation but it is
equal in magnitude to that flowing through the dielectrics. An
upper reciprocal TM mode (with the magnetic field polarized
parallel to the internal dc bias field) appears at the analyzed
frequency range, although it is not shown in the figure. The
same considerations also can be applied to the ¢ = 45° case.
Concerning the comparison between our electromagnetic data
and the magnetostatic ones, it can be observed in Fig. 3 that
both sets of data show the same qualitative behavior, even for
the complex mode. In case the magnetostatic approximation
can be assumed sufficiently valid, -the numerical agreement
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guide with hgy = 100 m, hy = 10pu m, hgo = 10p m, ef = 12.5,
4xMs = 1750 G, Hy = 200 Oe, ¢ = 0°, 8 = 90°.

between our full-wave results and the magnetostatic one
improves. This fact can be noted in Fig. 4, where a three thin
layers dielectric-ferrite-dielectric structure is analyzed. Our
results and those obtained using the magnetostatic formulas
of [25] coincide, being indistinguishable in the graphic. This
numerical coincidence is not surprising since the normalized
phase constant (3/kg, ko = w/c) values of Fig. 4 are much
higher than the ones of Fig. 3 (it is a well known fact
that this condition leads to the magnetostatic approach [1]).
This increase of the normalized phase constant values when
the ferrite layer height decrease is reported in [26]. The
magnetostatic complex values for the propagation constant
plotted in Fig. 3 and in Fig. 4 have been obtained using
the analytical extension to the complex plane of the implicit
dispersion relations in [24] and [25]. It should be noticed that
the magnetostatic approach can only predict certain part of the
complete electromagnetic spectrum of the guides, namely the
magnetostatic modes.

Fig. 5 shows the variations of the normalized phase con-
stant, 3/kg, and the attenuation factor, o (dB/mm), of the
fundamental mode of a two-layer dielectric-ferrite waveguide
(assuming hg1 = O in the structure shown in Fig. 2), when
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the direction of the internal dc magnetization field is varied
in the z — y plane (namely § = 0°). The operating frequency
is 3.45 GHz, and it lies within the forbidden frequency range
for wave propagation in an infinite ferrite medium [1]. Note
that wave propagation is reciprocal when # = 0 and § = 90°.
In the # = 0° case, the reciprocity is due to the symmetry of
the structure. In the § = 90° case, the wave propagation is
reciprocal because the fundamental electromagnetic TM mode
presents a polarization such that the magnetic field is aligned
with the external biasing field. For other values of 6, the
waveguide shows a strong nonreciprocal behavior. Complex
and backward waves appear in this case when propagation
is along (—z) direction. The phase constant of the complex
mode goes smoothly to zero when 6 approach 0°, giving rise
to two evanescent reciprocal waves. For propagation in the
opposite direction, the fundamental T M, mode becomes a
forward magnetostatic wave (FMW) when 6 decreases from
90°. Notice that purely evanescent modes ($Rk = 0) do not
occur except in the § = 0° case (in which two reciprocal
evanescent modes are present). This fact agrees with the
general theorem shown in [21], which establishes that purely
evanescent nonreciprocal modes are forbidden in transversely
magnetized nonreciprocal waveguides (i.e., magnetized at any
direction of the (z — y) plane of the figure). In consequence,
all nonreciprocal modes that do not carry a net average power
flux in the direction of phase velocity must be complex.

Fig. 6 shows the effects of the variation of the direction
of the internal dc bias field in the plane of the structure
(z — z plane, or § = 90°). Qualitative results are very
similar to the ones shown in Fig. 5, that is, complex and
backward waves appear at certain intermediate values of the
azimuthal angle. It is worth noting that purely evanescent
modes occur only in case the wave propagation is reciprocal
(6 = 90°). The nonappearance of evanescent nonreciprocal
modes has been observed in all the analyzed nonreciprocal
parallel plate waveguides regardless of the direction of mag-
netization. This fact suggest that the aforementioned theorem
about transversely magnetized nonreciprocal waveguides [21],
could be extended to nonreciprocal waveguides magnetized
at an arbitrary direction. Nevertheless, we have not found a
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TABLE I
NUMERICAL RESULTS CONCERNING POWER AND PROPAGATION CONSTANT OF THE BACKWARD AND COMPLEX MODES DEPICTED IN FiG. 7
Freq (GHz) P a(pw/mm) P p(pw/mm) R(P,)(uw/mm?)  Pea(uw/mm) Py s(uw/mm) ks (mmt)
3. —0.5472 - 10% 0.1333 - 10° 0 0 0 (—2.676,0)
3.15 —.9187 - 102 0.1397 - 103 0 0 0 (-1.071,0)
3.16 —.7239 - 102 0.7239 - 102 F0.2598 - 102 +.2223 . 103 +0.2178 - 103 (—0.9582,40.1794)
35 —0.1333 . 102 0.1333 - 102 F0.1559 - 102 +.2142 - 103 +.2570 - 103 (—0.2461,40.5849)
4. —1.324 1.324 T0.7167 +.2516 - 102 +0.3380 - 102 (—0.0293, £0.2706)
44 —0.5240 0.5240 F0.3769 - 101 +1.903 42,587 (—0.0128, 40.0360)
4.41 —0.3560 0.7319 0 0 0 (—0.8720 -1072, 0)
4.42 0.9683 2.522 0 0 0 (0.2378 - 1071,0)
4.5 3.793 6.230 0 0 0 (0.9484 . 10—1,0)
20 \\l
_ = /
S 10 Ko L i
£ 'e i
= £ . 4.4 4.5
= ~ I | |
Y T T !I
- 3
o]
4 . °
~10 Q. ¢=0
. (o] =]
=3.45GHz. 6=90 6=34
| Freq=3.450Hz f,=5.878
—20 1 L I L . 1 ) . | 1 ] | ]
0 30 60 90 25 3 35 4 45 5 55 6
¢ FREQ (GHz)
fig. 6. chrmalized ph;SC. cogl;t/ant 8 / ko :( —— ) and att%nuatif)rl: Fig. 7. Phase constant (mm™1!) «( ) and attenuation constant
actor o i~ ~ = = = in dB/mm in a parallel-plate waveguide with (1) o _ _ _ ) in a parallel-plate waveguide with hg; = 0,
hgyp = 0, hy = 0.4mm, hgp = 0.25 mm, e = 14.5, ¢4 = 12.5, hy = 04mm hgp = 025mm, e = 145, ez, - 12.5,

4rmM,; = 1600 G, Hy = 500 Oe, § = 90°.

general proof of such general theorem for an arbitrary dc
magnetization yet.

The dispersion characteristics of the fundamental mode of
the waveguide of Fig. 5 are plotted in Fig. 7. The internal
angles of the dc magnetization are § = 34° and ¢ = 0° so
that the complex nature of the analyzed mode can be easily
appreciated. Strong nonreciprocity as well as complex and
backward modes appear at frequencies within the forbidden
frequency range for plane wave propagation in a transversely
magnetized infinite ferrite medium (w1 < w < wojwy =

{wolwo + wm)} ,ws = wo + wy,) [1]. It is observed from
the figure that the mode appearing at 2.5 GHz, with positive
phase constant, is turning into an FMW when frequency
increases. The propagating mode with negative phase constant
at 2.5 GHz encounters a BMW at 3.155 GHz and they join
together to produce a nonreciprocal complex wave NCW. This
complex wave disappears above 4.405 GHz giving rise now
to a FEW and a backward electromagnetic wave BEW that
quickly becomes a FEW. This transition to a forward wave
occurs after the propagation constant passes through zero at
4.414 GHz. Above this frequency, two slightly nonreciprocal
FEW propagate.

Power computations for the backward and complex modes
depicted in Fig. 7 are shown in Table I. Special attention has
been paid to the frequency range in which the transition from
backward to NCW occurs. The real part of the y-component
of the Poynting vector R(P,) at the dielectric-ferrite interface

4rMs = 1600 G, Ho = 500 Oe, ¢ = 0°6 = 34°.

is also shown. It can be checked that power flows from
the dielectric to the ferrite layers in the exact amount to
compensate the attenuation, that is: R(P,) = (9/02)P, =
2aP,. Both the backward and complex waves carry a power
flux P, through the dielectric layer in a direction parallel to the
phase velocity, and in the opposite direction inside the ferrite
layer (see Table I). Actually, this result has been checked
in all the computed structures, that is, P, flows through
dielectric layers in the same direction as the wavefronts and
through ferrite layers in opposite direction (for backward
and complex modes). A nonzero transmitted power in the
transverse direction P, is present in Table I for the complex
modes. Notice that this direction is the only allowed one for
power transmission owing to the nature of the complex mode.

Complex modes in reciprocal waveguides have been widely
analyzed [14]-[17], [19]. These modes have been grouped
together into two pairs with propagation constants £5 — j«
and £8 + ja, respectively. Each one of these pairs would
be excited in a discontinuity (with the appropriate sign of
«), with the members of the exited pair strongly coupled
in the energy sense [16]. The presence of complex modes
propagating only in one direction, with propagation constant
B £ ja or (rather than and) — (3 £ ja, is a direct consequence
of the nonreciprocity of the wave propagation. Therefore, the
pairs of complex modes suggested in [16] have not any sense
here because there are not two different and opposite values for
the real part of the propagation constant among the complex
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Fig. 8. Phase constant A(mm™!) :( ) and attenuation constant
a(mm™1) u----- ) versus the ferrite height in a parallel-plate wave-
guide with hgy = 0, hgo = 0.25mm, ¢f = 14.5, ¢4 = 12.5,
4w Ms = 1600 G, Hp = 500 Oe, ¢ = 0°:6 = 34°.

solutions. Assuming that nonreciprocal complex modes are
excited in a discontinuity of a nonreciprocal waveguide, it
is expected that each member of the single pair of NCW
present in the waveguide could be excited separately (with the
appropriate sign of the attenuation constant «). Nevertheless,
despite of the presence of a single complex wave of the pair at
the discontinuity, there is not any contradiction concerning the
energy associated to this wave since power flux computations
have made it evident that the same amount of power flows
in opposite directions through the ferrite and the dielectric
layers in NCW. A similar result was previously reported in
[15] for reciprocal complex modes propagating in rectangular
dielectric image guides.

Fig. 8 shows the effect of the height of the ferrite layer on
the propagation characteristics of the analysed complex mode.
Thus, it can be observed that the propagation constant of the
complex wave remains almost unchanged when the height of
the ferrite layer increases above 5 mm, approximately. This
fact suggests that the complex waves are mainly associated to
the ferrite-dielectric interface. This very interpretation is also
provided by the analysis of the transmitted power through the
ferrite layer. This quantity remains practically unchanged when
the ferrite layer thickness increases above 5 mm. Nevertheless,
the effect of the ferrite layer thickness is significant for
thin ferrite layers: the complex wave disappear below about
0.145 mm. Another mode also appears in the figure when the
ferrite-layer height is above 0.3 mm approximately. This mode
starts being a FMW to turn into a FEW when height increases.

The effects of the dielectric permittivity of the dielectric
layer have also been analyzed although they will not be
shown. It has been found that the qualitative behavior of
the fields is not significantly affected by this parameter.
Fig. 9 shows the effect of the dielectric layer height on the
propagation constants of the two nonreciprocal fundamental
modes appearing at 3.45 GHz with § = 34°. Note that the
upper ground plane distance strongly affects the behavior of
the fields when the dielectric height is below about 0.8 mm.
In turn, this distance hardly affects for heights above 0.8 mm.

Fig. 10 displays the variations of the propagation constant of
a symmetrical three-layers (dielectric-ferrite-dielectric) wave-
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Fig. 9. Phase constant ﬂ(mm“l) (: ) and attenuation constant
a(mm™1) u-- - - - ) versus the dielectric height in a parallel-plate
waveguide with hgy = Ohy = 04 mm, ef = 145, ¢g5 = 1,
47 Ms = 1600 G, Hg = 500 Oe, ¢ = 0°:6 = 34°.
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Fig. 10. Normalized phase constant 8/ko :( ) and attenua-
tion factor o :(— — — - = ) in dB/mm in a parallel-plate waveguide with
hgy = 0.25mm, hy = 0.4 mm, hgo = 0.25 mm, ¢33 = 12.5, €q9,
€y = 14.5, 4w M, = 1600 G, Ho = 500 Oe, ¢ =90°.

guide (hq1 = hqo in Fig. 2) at 3.45 GHz when the direction
of the internal dc magnetization changes in the x — z plane
(f = 90°). The wave propagation is reciprocal, because the
guide, including the dc magnetic biasing field, has inversion
symmetry with respect to any point at the horizontal middle
plane. Two pairs of reciprocal complex waves RCW appear
now at certain intermediate values of the azimuthal angle. A
comparison with the two-layers configuration shows that the
real part of the complex propagation constant of the RCW
does not go to zero smoothly when ¢ increases (see Fig. 6).
In turn, the real part of k, goes steeply to zero, each pair
of reciprocal complex modes giving rise to two evanescent
reciprocal waves. This latter result is in agreement with the
aforementioned theorem [21] for reciprocal and nonrecipro-
cal nonpropagating modes in gyromagnetic inhomogeneously
filled waveguides, namely, reciprocal purely evanescent modes
are allowed, but nonreciprocal purely e¢vanescent ones are
forbidden and must be complex for all frequencies.

IV. CONCLUSIONS

We have presented a systematic method to obtain the propa-
gation characteristics of electromagnetic waves propagating in
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bianisotropic multilayered parallel plate waveguides. Special
care has been paid to the obtaining of the dispersion relation of
the waveguide in terms of the complex roots of an analytical
function. An efficient integral method is then employed to
find these complex zeros. This method makes it possible to
overcome all the drawbacks regarding the handling of mero-
morphic functions. Following the aforementioned searching
procedure, all the complex propagation constants lying within
a given region of the complex plane can be readily obtained.
A systematic procedure to compute the power flow has also
been developed.

The method developed here to solve the characteristic
equation and to obtain the transmitted power has been used
to investigate the modal spectrum of lossless parallel-plate
waveguides loaded with ferrite layer arbitrarily magnetized.
This investigation has been restricted to the analysis of uniform
modes, i.e., modes that propagate along a given direction in
the plane of the waveguide, being uniform in the direction
orthogonal to propagation. The numerical results have been
checked both with previous one reported in the literature and
with those obtained by solving the magnetostatic approach
formulas (assumed to be valid). A good agreement has been
found in all cases. Nevertheless, the comparison with previous
results has been restricted to propagating modes only since no
previous information about complex modes in this type of
waveguides has been found.

The numerical investigation has revealed that the transition
between forward and backward waves always leads to the
appearance of a complex wave. In case the magnetostatic
approach is assumed to be valid, the complex propagation
constant of magnetostatic complex modes can be calculated
by using the analytical extension to the complex plane of
the magnetostatic implicit dispersion relation for propagating
waves. When the forward and backward modes are nonrecip-
rocal, the resulting complex modes are equally nonreciprocal,
appearing as a pair of waves with an exp(—jk,z)-dependence
with complex conjugate propagation constants k, and k.

In two-layers ferrite-dielectric parallel plate waveguides, it
has been found that he fundamental electromagnetic mode be-
comes complex when the waveguide is subjected to an oblique
dc magnetization. Such a transformation of the propagating
fundamental mode into a complex mode has been observed
at frequencies included within the forbidden frequency range
for wave propagation in an infinite lossless ferrite medium. It
has also been found that a complex mode in such two-layer
structures appears and disappears turning into forward and
backward propagating waves. Nonreciprocal purely evanescent
modes are not present in the investigated waveguides. All the
nonreciprocal modes that do not carry a net average power
flux in the direction of the phase propagation are complex
modes. This latter result is in agreement with previous results
reported by the authors [21].

Power computations have shown that power flux through the
dielectric layers is always in the same direction as the phase
propagation. On the contrary, the power flux of complex and
backward waves through ferrite layers occurs in the opposite
direction to the phase propagation. The total power transmitted
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by complex modes is found to be null in the direction of the
phase propagation.

The aforementioned transformation of the fundamental
modes in complex waves has also been found in reciprocal
dielectric-ferrite-dielectric waveguides magnetized at an
oblique direction. These modes show complex reciprocal
propagation constants of the type k&, = +0 + ja. Since the
wave propagation is reciprocal, reciprocal evanescent modes
are also present together with the reciprocal complex modes.

APPENDIX A

It is a well known fact from the diffraction theory that if
1(r) is a function that satisfies the Helmholtz equation inside
a closed surface S and if ¢ and (8/8,)¢ are zero over a
finite part of S, then ¢ is zero at all points of the space
enclosed by S [27]. This theorem shows that if n x E and
n X H are zero on a finite part of a closed surface enclosing a
homogeneous, isotropic, and source-free region, all the fields
are zero at all points inside this region. To extend this theorem
to homogencous but anisotropic media, we can proceed as
follows:

Theorem: let a source-free bianisotropic homogeneous
medium bounded by a closed surface S. If n x E and n x H
are assumed to be zero on a finite surface S; C S, then E
and H are zero at any points enclosed by S.

Proof: Let Pi(z,y,z) be a point on S; (see Fig. 11).
From the Maxwell equations it is followed for the normal
component of the B(P;) fields that

, 8E, OE, _
—jwBn(P1) = ou v =0
. 8H, 0H, _
jwDau(Pr) = 5= — 5 = =0. (18)

If the constitutive relation written in the coordinate system

(u,,n), ie.,
HEEaH

is combined with the starting hypothesis taking into account
(18), the second and fifth equaitons in (19) are rewritten as:

(19)

0 = mbhyE,, + mhs H,

0 = mg B + mis Hy, (20)

giving rise to

E,=H,=0 (1)

assuming the determinant in (20) is not zero. Thus, incorpo-
rating (21) in (19) and taking into account that n x E = 0
and n x H = 0 on Sj, it follows that

Since surface 57 is finite, all the field tangential derivatives of

any order are also cancelled, that is

014,(Py)  094,(Py)
Aus Qe

=0 (23)
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Fig. 11. A closed surface enclosing a bianisotropic and homogeneous

medium.

where A;(P;)(1 < i < 6) stands for one of the six component
of the [D, B] or [E, H] field.

Owing to the Maxwell equations are linear equations of first
order, the normal derivative of any field is given by:

A(P) & 94 0A;
D R .
j=t

with P;,,Q;;, and R;; being constants that depend on the
characteristics of the medium. It is obvious from (24) that
any normal field derivative or order ¢ can be expressed in
terms of the fields and its tangential derivative of orders
1,2,---,q. Hence, all the normal field derviatives together
with any crossfield derivative are null provided S; is finite

0%A;(P1) _

s 0. (25)

Let P(x,y,z) be an arbitrary point inner to S. From the
application of the Taylor theorem, the electromagnetic field
in P,A;(P) can be determined in terms of A;(P;) and
its derivatives. Since the electromagnetic field and all its
derivatives are null in P;, the field in P is null.

Let us now consider that the medium bounded by S is
piece-wise homogeneous. The above theorem shows that the
electromagnetic field is null inside the homogeneous region in
contact with Sy. If the tangential continuity of E and H over
the surface bounding this homogeneous region is taking into
account, the successive application of the above theorem leads
to a null field in all the region enclosed by S.

APPENDIX B

In case the layer considered does not have optic activity
([, = 0,[p]; = 0) and k, = 0, [N*] and [IN"] matrices are
given by

Kk 0 ( €21 Hay ) L;a_
wity, €22 3o /6;2
. 0 0
(N?] = €2 (26)
0 0 e 0
0 0 0 0
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0 0 0 o
€22
_ k; 0 B3 (l‘;l __ €2 )
[Nz] = wpg, P32 Hoz €22 (27)
I

where pp; and €k, = 1,2,3 stand for the orthogonal
components of the constitutive tensors [u,] and [¢;] in the
considered coordinate system (x,y, z), and the superscript *
stands for the complex conjugate.
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