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Nonreciprocal and Reciprocal Complex

and Backward Waves in Parallel Plate

Waveguides Loaded with a Ferrite

Slab Arbitrarily Magnetized
Ricardo Marqu6s, Francisco L. Mesa, and Manuel Horno, Member IEEE

Abstract— This paper presents a rigorous and systematic
method of analysis of the electromagnetic wave propagation
in parallel plate waveguides with a multilayered bianisotropic
medium. The method is applied to the numerical study of parallel

plate waveguides with a multilayered medium including Iossless
ferrite layers magnetized at an arbitrary direction. Both the
propagation constant and the transmitted power are computed.

Backward, i.e., power flux in opposite direction as phase velocity,

and nonreciprocal complex modes have been found to be an

essential part of the model spectrum of the structures analysed

here. A detailed investigation has been carried out about the

parameters related to the appearance of these modes.

I. INTRODUCTION

I N THE LAST four decades, the study of the interaction

of microwaves with ferrites inside waveguides has steadily

increased owing to its interest in the microwave technology.

Propagation in planar ferrite-loaded structures for different dc

magnetic bias orientation has been widely studied by means

of a magnetostatic approach (eg., [1] and references therein).

There are also some works in the literature dealing with the

electromagnetic wave propagation in arbitrarily magnetized

homogeneous ferrites between two perfectly conducting plates

(see [2] and references therein) and some other works dealing

with multilayered ferrite-loaded planar waveguides magne-

tized at a direction either parallel or orthogonal to the direction

of propagation [3] – [5]. However, to the authors’ knowledge,

there is not any work devoted to the full-wave analysis of

electromagnetic propagation in multilayered ferrite-loaded par-

allel plate waveguides arbitrarily magnetized. The relevance

of an electromagnetic analysis, even if the normalized phase

constant is high enough to apply the magnetostatic approach,

has been shown in [6].

Another topic widely analyzed in the literature is the

microwave propagation along microstrip or microslot-like

transmission lines on ferrite-loaded substrates magnetized at

different directions. Specifically, [7], [8] have analyzed

electromagnetic propagation in microstrip-like structures

printed on a general anisotropic substrate (including a ferrite
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slab with an arbitrary dc biasing magnetic field). These

structures as well as most guide elements used in MIC/MIvlIC

technology lines or image guides can be subdivided in regions

that can be viewed as multilayered parallel plate waveguides.

The knowledge of the different modes propagating at an

arbitrary direction in these parallel plate waveguides is a very

valuable point to be considered in the analysis of the MIC

and MMIC lines. For example, the presence of leaky waves

can be predicted from the knowledge of the modal spectrum

of the different parallel plate subregions in which the line is

subdivided [9], [10].

When magnetized ferrite layers are present in lines, the

modal spectrum of the different parallel plate waveguides

strongly depends on the direction of wave propagation in

the plane of the structure (the plane defined by the planar

nature of the structure). Notice that the direction fixed by the

dc magnetizing field Ho determines a privileged direction in

these waveguides on the contrary to what happens in nonmag-

netized waveguides. Thus, the analysis of wave propagation

at an arbitrary direction with respect to the direction fixed by

Ho can be equally made by analyzing the wave propagation

along a fixed direction but with the dc biasing field arbitrarily

oriented. Therefore, the analysis of the modal spectrum of a

ferrite loaded parallel plate waveguide, with an arbitrary dc

magnetic biasing field, should be an essential previous step

for the study of the propagation along fin-line and microstrip-

like transmission lines printed in these waveguides, even in

case the dc magnetization is either normal or parallel to the

direction of propagation imposed by the metallizations.

In this paper, we present a systematic method to obtain

the complete modal spectrum of a multilayered parallel plate

waveguide arbitrarily magnetized, or in other words, the modes

propagating at an arbitrary direction inside a parallel plate

waveguide with a fixed dc magnetic bias field. The dispersion

relation is obtained by following the basic ideas previously

developed by the authors in [11] to compute the spectral

Green’s function Qf a planar structure with a multilayered

bianisotropic medium. In this way, the dispersion relation is

expressed in terms of solutions to certain equation that are

shown to be the complex zeroes of an analytical function.

This fact makes it possible to apply conventional and very

efficient integral methods [12] to obtain all the roots of the
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Fig. 1. Cross-section of a multilayered parallel plate waveguide.

dispersion equation in a given region of the complex plane.

Transmitted power through each layer is also computed by

using an analytical algorithm that is developed here.

The numerical analysis of the above structures has revealed

the presence of certain unusual types of modes, namely non-

reciprocal complex wave modes. Reciprocal complex modes

have been reported in different shielded dielectric loaded

waveguides such as circular waveguides containing an axial

dielectric rod [14], rectangular image guides [15], fin-lines

[16], and in microstrip lines [17], [18]. These modes also

appear in waveguides homogeneously filled with anisotropic

media [19]. The existence of nonreciprocal complex modes in

transversely magnetized ferrite-loaded fin-lines was reported

in [20].

More recently, the authors have shown that all modes that

do not carry a net average power flux must be complex if

they are also nonreciprocal and propagate along a transversely

magnetized waveguide with an arbitrary cross-section [21].

In the present paper, the nonreciprocal complex modes are

deeply analyzed in order to establish their main character-

istics (frequency range and mechanism of appearance and

disappearance, transmitted power, mode coupling, etc).

II. ANALYSIS

A. Characteristic Equation

Consider the multilayered parallel plate waveguide shown

in Fig. 1. The layers are assumed to be made of arbitrary

bianisotropic materials, including in this way: dielectric or

magnetic intrinsic anisotropy, optical activity, and magne-

tized ferrite and/or semiconductor—namely, gyrotropic layers.

The unique restriction is that the media must show a linear

electromagnetic behavior, i.e., the constitutive electromagnetic

properties of each layer can be described by means of a 6 x 6

tensor:

with [e]; and [p]. being the dielectric permittivity and the

magnetic permeability, respectively, and [p],, [p’]~ the optical

activity tensors.

Let a new structure be formed by removing the upper

conducting half plane of the structure in Fig. 1 and impressing

a tangential electric field 13~ = 13j’0 exp(jut – jk,.z – .jkzz)

at this upper interface (k, and kz stand for the complex prop-

agation constants in the +.z and +x direction, respectively,

and w for the angular frequency; the time-dependence will

not be written henceforth). It is followed from the uniqueness

theorem that the electromagnetic field between upper and

the lower interfaces of this new configuration is completely

determined provided the tangential electric field at the upper

boundary is imposed (the lower interface being a perfect

conducting plate). Specifically, once the tangential magnetic

field on the lower plane has been obtained, the surface currents

on this conducting plate are determined. Owing to the linear

properties of the media, a linear relation has to exist between

the tangential electric field at the upper plane E#, E}, and the

current on the lower conducting plane J:, J;, that is

J:,. = [L(kz, kz, w)] . E;. . (2)

Note that once (2) is stated, the characteristic equation can be

readily obtained. This is made by requiring that a lower current

surface do exist (J&Y # O), if a null upper electric tangential

field (l?~O = O) is Imposed. The characteristic equation can

then be written by means of the following implicit relation:

det([L(kz, kZ, w)]-l) = O. (3)

A direct comparison of (2) with expression (4) in [11]

shows that the [L] matrix appearing in (2) is in fact

the [L(k,, kz, w)]~,~+l matrix defined in [11] in case the
subscripts nK and nK+l (see [11, Fig. 3 (c)]) stand for

the lower and upper planes of the current configuration,

respectively. Hence, the [L] matrix of (2) can be computed

following the general method developed in [11].

Fixed the value of w, a pair of k., kZ satisfying (3) cor-

responds to a plane wave propagating in the parallel plate

waveguide with a wave vector k = k, aZ + kzaz. Notice that

the wave-vector k = kzaz + kZaZ does not always define a

direction in the (x – z) plane since the quantities kz, kz are in

general complex. Only in few cases (for example when both

k= and k% are real) k does define a direction in the (x – z)

plane (k = ktac; ac is a unitary vector in the (x – z) plane).

Only in these cases the fields do not vary in the direction

perpendicular to at and ag (defined by a~ = ay x a~). This

type of waves will be called in the following uniform modes

since they are uniform in a direction that is perpendicular to

the propagation one. Although in the numerical computations

we restrict ourselves to the uniform modes defined above, the

method developed here is not restricted by this limitation.

B. Solution of the Characteristic Equation

For fixed values of w and kZ, the complex function j(k.) =

det([L(kz; km, w)] ‘1) appearing in (3) is an analytic function

in the complex /-c=-plane. This relevant feature can be deduced

from the fact that, any pole of the above function must be

related to an electromagnetic field configuration in which both

aY x E and av x H vanish at the lower plane of Fig. 1, with a

nonzero impressed tangential electric field at the upper plane

(after the conducting plate at this plane has been removed).

Nevertheless, it can be shown that this field configuration is not

nossible if the lavers are made of linear media and have finite
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thickness (see Appendix A). Therefme, the above function

cannot have poles in the entire complex plane.

Being ~(kz) an analytic function, it is possible to apply a

contour integral method to search for the zeroes of (3) in the

complex k, plane. The method used in this work is base on

the well known themem of the themy of analytical functions

which states that, if ~(kZ) is an analytical function, and C

is a closed curve in the complex k. plane that does not pass

through a zero of ~(k, ), then

1 ! pr f’(kz) & = ~ I&i
z ~ z f(kz)

‘i=l

(4)

where kz, i(i= 1, ..., v) are all the zeros of f(k~) that lie in

the region enclosed by the curve C.

Starting from (4) it is pmsible to develop a system-

atic method for searching all the zeros of ~(kz) =

det( [L(kZ; k%,u)] ‘1) in a given region of the complex kz -

plane. A general description of this method can be found

in [12], nevertheless, we will give here a brief sketch of

the specific procedure followed by us (more details about

the implementation of the method are given in [13]). The

contour integration is chosen to be a circumference and the

numerical integration is made in terms of the Gauss–Legendre

quadrature (a forty-points quadrature provides sufficient

accuracy). We begin by computing (4) for IV = O, obtaining in

this way the total number of zeros v within the region enclosed

by C. If u > 4 the region is subdivided in subregions up

to v S 4. In this case, the integrals in (4) are computed for

N=l, .. .. v to obtain a set of v equations of order v. The roots

of these equations are the zeros of f(kz), kz,i, i = 1, .”., v

in the considered subregion. These roots can be algebraically

obtained if v < 4. The CPU time employed in the forty

evaluations of .f (kz ) = det( [L(kz; kz, w)] – 1) to compute the

Gauss–Legendre quadrature, is about 200 milliseconds in a

Vax-6410 machine.

If k,,, is a zero of f(kz) = det([L(kz; kC, w)]-l) for a

given km, the pair (kz,~, kz) defines a uniform mode prop-

agating along the waveguide. Nevertheless, if we are only

interested in obtaining the complex propagation constants kt

of the different uniform modes that can propagate along the

structure at an arbitrary direction, ac = cos ~az + sin $CZm,in

the (z – z) plane (namely, at an angle ~ with respect to the

positive z direction), we only need to compute the zeros of

f(kz) = det([L(kZ; O,W)]-l) (with kz = O), after the media

and the dc biasing fields in Fig. 1 are subjected to a rotation

by angle –< about the z-axis.

C. Power Computation

The average powers per unit length transmitted in the x and

z direction through each layer, i, of the structure shown in

‘i) and 7$), are given byFig. 1, P,

h,
p$)=+

/( EzH~ – EvH;)i dy (5)
h.–l

1411

(superscript * indicates complex conjugate and ~ real part).

The computation of these quantities in a bianisotropic layer

is made by following in certain way the method developed in

[22]. We start from Maxwell equations that can be written in

each layer as:

[F?l:ll(,x,)”[:l=~w[-ii]i-iqsx,)l.ll
with [S] being

[~l(3x3) =

o jkz $
–jkz O 1–jkz .

$ jkz O——

(7)

(8)

The second- and fifth-row equations in(7) are algebraic equa-

tions, and they can be used to eliminate Eg and -HV in

terms of the remaining field components. Once the expressions

of EY and Hv have been found as linear functions of the

other components, they can be introduced in (5) and (6;) to

rewrite the integrands as bilinear functions of Xi; X? =

[l?C, E=, H., Hz]i (superscript T stands for transpose), that is

(E.H; - E,H:), = x: . [Nz], ~x: (9)

(J%HJ - J%Hj), = x? ~[Nz], . X; (lo)

where [ATZ]~ and [lVZ] ~ are (4 x 4) matrices that are explicitly

written in Appendix B. Following the general treatment in

[11], solutions for Xi(y) are given by

Xi(y) = exp(@[Q]iy) . Xi(h~_l) hi_l ~ y < hi (11)

([Q]i is a (4 x 4) matrix defined in [11]). Once kz and k%

have been determined, Xi (y = O) is readily obtained from

(2) with 13~0 = O and the different Xi(y) computed using

(11). Substituting now (9), (10), and (11) in (5) and (6), the

transmitted power P$~ is given by

h,
pp~=+.l

/(h._l ‘f(h’-l)”exp(~u[Ql~y)‘[N%”]
.exp(–ju[Q]$y) . X~(ht_l)) dy.

(12)

We first diagonalize [Q]i in order to compute (12), that is:

[Q],= P%. [Al’“[D];l (13)

with [~] ~ being the diagonalization matrix of [Q]~ and

[A] a diagonal matrix whose elements are A~,l =

&f~,z(A~, k= 1,. ... 4 stand for the eigenvalues of matrix

[Q];). If (13) is now substituted in (12), P$i can be rewritten,

after some manipulations, as
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Fig. 2. Cross-section of a three ferrite-dielectric layer parallel-plate wave-
guide.

where

a~,t = Y; M;l(y)* . (15)

Y; is the kth component of the four component vector

Yi = [D];l . x~(hz-~) , (16)

and M: ~ the k, 1 elements of the (4 x 4) matrix

[ml], = [D];. [N’+q, ~[D]: . (17)

In numerical computations, the power flux has been normali-

zed assuming the z-component of surface current density to

be 1 mA/mm.

III. NUMERICAL RESULTS

The method of analysis developed in the previous sections

is applied in this section to the study of the propagation

of uniform modes in ferrite-loaded parallel plate wave-

guides magnetized at an arbitrary direction. As was pointed

out in Section II-A, the present method is not restricted to

this limitation. The specific structure to be analyzed is a

three-layer parallel plate waveguide filled with a composite

ferrite-dielectric medium (see Fig. 2). The losses and the

exchange interaction effects are assumed to be negligible

in the ferrite layer. The dielectric layer is also assumed

lossless. These assumptions are made to emphasize the effects

of the external magnetization field and to separate these

effects from other possible ones (intrinsic anisotropy, exchange

interactions, magnetic, or dielectric losses, etc.). Nevertheless,

all these effects can be incorporated in the explicit expression

of the magnetic permeability tensor by using the different

models developed in the literature. The direction of the internal

dc magnetization, HO, of the ferrite layer is defined by the

spherical O and @angles. The [~] tensor of the ferrite layer is

assumed to be the Polder tensor [1] for this direction of the dc

biasing field. Notice that the internal dc magnetic field does

not correspond in general to the external dc magnetizing field,

except a few particular configurations (see [1] and references

therein).

As was mentioned above, the numerical computations have

been restricted to the analysis of the so defined uniform modes

(i.e., waves having a wave vector given by k = kza,+k%az =

kcac). This fact limits the possible complex values of kz

and kZ to those satisfying some of the following conditions

(s indicates imaginary part): 1) Slcz/sk, = ‘Jlkz/Mkz,

2) ?3Mz = o, !nkz = O or zkz = O,&4z = O, and 3)

kZ=O, kZ#Oor k.= O, kz # O. The propagation

constants of these modes for an arbitrary dc magnetization

are computed by following the procedure outlined at the

end of Section III-B. This procedure makes it possible to

reduce the analysis of the aforementioned cases to the analysis

of waves propagating along the +z-direction (kz = O) with

different orientations of the internal dc biasing field. In this

case k, = /3 – jcu with /3 being the phase constant and

CI the attenuation constant. The main reasons to restrict our

numerical investigations to uniform modes are simplicity and

the relevant information provided by this type of modes.

A good insight in the microstrip or microslot transmission

lines properties can be obtained from the analysis of the

uniform modes propagating along the different parallel plate

waveguides in which the transmission line can be subdivided.

For example, the allowed k-band for the lateral nonradiating

regime of a transmission line (at a given frequency) can be

determined from this analysis. Notice also that in more general

cases, it does not seem to be easy to plot the four quantities

that determine the complex wave vector (k = kzaz + kzaz)

so that its physical interpretation becomes apparent. Finally,

the theoretical interest itself of the uniform modes propagation

characteristics justifies, in our opinion, its specific analysis.

Before analyzing particular structures, we have exhaustively

checked our numerical results with those available in the

literature. As an example, we have compared our results

with those provided in [23], Fig. 2. Our numerical data have

been computed assuming a very distant shielding conducting

plate over the structure analyzed in [23]. The internal dc

magnetizing field is fixed at two different orientations ((3 =

90°, $ = 45° and 9 = 90°, ~ = OO). The frequency depen-

dence of the propagation constants of the fundamental mode is

depicted in Fig. 3 regarding (+z) and (–z) wave propagation.

Some of electromagnetic data presented in [23, Fig. 2] when

@= +45”, ~90° (d= 45°,0° in our notation) are reproduced
in Fig. 3 (marked by the circles) as well as the magnetostatic

limit results (dotted lines). The magnetostatic data have been

obtained following the theory reported in [24] for the # = 0°

case. Note the good agreement between our data and the elec-

tromagnetic data of [23] at frequencies below about 4.2 GHz

in the # = 0° case. Our results for frequencies above 4.2 GHz

clearly show how the mode depicted in [23, Fig. 2] is in fact

the superposition of two modes (a forward electromagnetic

wave (FEW) and a backward magnetostatic wave (BMW))

which gives rise to a nonreciprocal complex mode above

4.2 GHz. Power computations have been accomplished to

support these considerations. Specifically, for complex modes,

it has been verified that power flux in dielectric layers occurs in

the direction of phase propagation. In ferrite layers, the power

flux is opposite to the direction of phase propagation but it is

equal in magnitude to that tlowing through the dielectrics. An

upper reciprocal TM mode (with the magnetic field polarized

parallel to the internal dc bias field) appears at the analyzed

frequency range, although it is not shown in the figure. The

same considerations also can be applied to the ~ = 45° case.

Concerning the comparison between our electromagnetic data

and the magnetostatic ones, it can be observed in Fig. 3 that

both sets of data show the same qualitative behavior, even for

the complex mode. In case the magnetostatic approximation

can be assumed sufficiently valid, -the numerical agreement
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47rA4. = 1750 G, HO = 200 Oe, qJ = 0°, 9 = 90°.

between our full-wave results and the magnetostatic one

improves. This fact can be noted in Fig. 4, where a three thin

layers dielectric-ferrite-dielectric structure is analyzed. Our

results and those obtained using the magnetostatic formulas

of [25] coincide, being indistinguishable in the graphic. This

numerical coincidence is not surprising since the normalized

phase constant (/3/ko, k. = w/c) values of Fig. 4 are much

higher than the ones of Fig. 3 (it is a well known fact

that this condition leads to the magnetostatic approach [1]).

This increase of the normalized phase constant values when

the ferrite layer height decrease is reported in [26]. The

magnetostatic complex values for the propagation constant

plotted in Fig. 3 and in Fig. 4 have been obtained using

the analytical extension to the complex plane of the implicit

dispersion relations in [24] and [25]. It should be noticed that

the magnetostatic approach can only predict certain part of the
complete electromagnetic spectrum of the guides, namely the

magnetostatic modes.

Fig. 5 shows the variations of the normalized phase con-

stant, /?/ko, and the attenuation factor, a (dB/mm), of the

fundamental mode of a two-layer dielectric-ferrite waveguide

(assuming hd,l = O in the structure shown in Fig. 2), when

20

15

–15
Freq=3.45 GHz.

.20 ~

o 30 60 90
e

Fig. 5. Normalized phase constant /3/k0 :( ) and attenuation
factor Q :(–––––) in dB/mm in a parallel-plate waveguide with hd,l = O,

hf = 0.4 mm, hd,~ = 0.25 mm, ef = 14.5, ~d,z = 12.5, 47rkf3 = 1600
47riW, = 1600 G, Ho = 500 Oe, ~ = OO.

the direction of the internal dc magnetization field is varied

in the z – y plane (namely @= OO). The operating frequency

is 3.45 GHz, and it lies within the forbidden frequency rmge

for wave propagation in an infinite ferrite medium [1]. Note

that wave propagation is reciprocal when @= O and O = 90°.

In the d = 0° case, the reciprocity is due to the symmetr!y of

the structure. In the O = 90° case, the wave propagation is

reciprocal because the fundamental electromagnetic TM mode

presents a polarization such that the magnetic field is aligned

with the external biasing field. For other values of 6, the

waveguide shows a strong nonreciprocal behavior. Complex

and backward waves appear in this case when propagation

is along ( –z) direction. The phase constant of the complex

mode goes smoothly to zero when O approach 0°, giving rise

to two evanescent reciprocal waves. For propagation in the

opposite direction, the fundamental TM. mode becomes a

forward magnetostatic wave (FMW) when O decreases from

90°. Notice that purely evanescent modes (?31k= O) do not

occur except in the 9 = 0° case (in which two reciprocal

evanescent modes are present). This fact agrees with the

general theorem shown in [21], which establishes that purely

evanescent nonreciprocal modes are forbidden in transversely

magnetized nonreciprocal waveguides (i.e., magnetized at any

direction of the (x – y) plane of the figure). In consequence,

all nonreciprocal modes that do not carry a net average power

flux in the direction of phase velocity must be complex.

Fig. 6 shows the effects of the variation of the direction

of the internal dc bias field in the plane of the structure

(x – z plane, or d = 900). Qualitative results are very

similar to the ones shown in Fig. 5, that is, complex and

backward waves appear at certain intermediate values of the

azimuthal angle. It is worth noting that purely evanescent

modes occur only in case the wave propagation is reciprocal

(6’ = 900). The nonappearance of evanescent nonreciprocal

modes has been observed in all the analyzed nonreciprocal

parallel plate waveguides regardless of the direction of mag-

netization. This fact suggest that the aforementioned theorem

about transversely magnetized nonreciprocal waveguides [Zl],

could be extended to nonreciprocal waveguides magnetized

at an arbitrary direction. Nevertheless, we have not found a
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TAHLE I

NUMERICAL RESULTS CONCERNINGPOWERAND PROPAGATIONCONSTANT OF THE BACKWARD AND COMPLEX MODES DEPICTED IN FIG. ‘7

Freq (GHz) ‘Px,~(pw/mm) 7z,f(#w/mm) !R(PY ) (pto/mm2) ‘pz,d(&W/mm) ‘F’z,f(pw/mm) k. (mm–l )

3. –0.5472 .104 0.1333.105 0 0 0 (-2.676,0)

3.15 –.9187 ~102 0.1397.103 0 0 0 (-1.071,0)

3.16 –.7239 .102 0.7239.102 +0.2598 .102 +.2223 .103 +0.2178 .103 (-0.9582,+0.1794)

3.5 –0.1333 .102 0.1333.102 *0.1559 .102 +.2142 .103 +.2570 ~103 (–0.2461,+0.5849)

4. –1.324 1.324 ~0.7167 +.2516 .102 +0.3380 .102 (-0.0293, +0.2706)

4.4 –0.5240 0.5240 +0.3769 10–1 +1.903 &2.587 (-0.0128, +0.0360)

4.41 –0.3560 0.7319 0 0 0 (-0.8720 ~10-2, O)

4.42 0.9683 2.522 0 0 0 (0.2378 ~10-’,0)

4.5 3.793 6.230 0 0 0 (0.9484 10-1,0)

20 ~
Y

- LJ

x

’210 -~
{ Ho ,-------

,/ ----------
m

%0 - I

Fig. 6. Normalized phase constant ~/ko :( ) and attenuation

factor a :(– – – – –) in dB/mm in a parallel-plate waveguide with

h~,l = O, hf = 0.4 mm, hd,z = 0.25 mm, Ef = 14.5, ~d,z = 12.5,
4rrM, = 1600 G, HO = 500 Oe, $ = 90°.

general proof of such general theorem for an arbitrary dc

magnetization yet.

The dispersion characteristics of the fundamental mode of

the waveguide of Fig. 5 are plotted in Fig. 7. The internal

angles of the dc magnetization are O = 34° and @ = 0° so

that the complex nature of the analyzed mode can be easily

appreciated. Strong nonreciprocity as well as complex and

backward modes appear at frequencies within the forbidden

frequency range for plane wave propagation in a transversely

magnetized infinite ferrite medium (w1 < w < wz; WI =

i{~o(~o + L%)}, W2 = WO + w~) [1]. It is observed from
the figure that the mode appearing at 2.5 GHz, with positive

phase constant, is turning into an FMW when frequency

increases. The propagating mode with negative phase constant

at 2.5 GHz encounters a BMW at 3.155 GHz and they join
together to produce a nonreciprocal complex wave NCW. This

complex wave disappears above 4.405 GHz giving rise now

to a FEW and a backward electromagnetic wave BEW that

quickly becomes a FEW. This transition to a forward wave

occurs after the propagation constant passes through zero at

4.414 GHz. Above this frequency, two slightly nonreciprocal

FEW propagate.

Power computations for the backward and complex modes

depicted in Fig. 7 are shown in Table I. Special attention has

been paid to the frequency range in which the transition from

backward to NCW occurs. The real part of the y-component

of the Poynting vector !.X(PV) at the dielectric-ferrite interface

2 -

–2 - f2=5.878

d I I I I I I
2.5 3 3.5 4 4.5 5 5.5 6

FREQ (GHz)

Fig. 7. Phase constant ~(mm–l) :( ) and attenuation constant

~ (mm– 1) ::(– – – – –) in a parallel-plate waveguide with hd, ~ = 0,
hf = ().4 mm, hd,z = 0.25 mm, ef = 14.5, Cd,2 = 12.5,
47rA.f, = 1600 G, HO = 500 Oe, @ = OO@ = 34°.

is also shown. It can be checked that power flows from

the dielectric to the ferrite layers in the exact amount to

compensate the attenuation, that is: ‘X(.F’Y) = (8/8z)P. =

2QPZ. Both the backward and complex waves carry a power

flux P. through the dielectric layer in a direction parallel to the

phase velocity, and in the opposite direction inside the ferrite

layer (see Table I). Actually, this result has been checked

in all the computed structures, that is, PZ flows through

dielectric layers in the same direction as the wavefronts and

through ferrite layers in opposite direction (for backward

and complex modes). A nonzero transmitted power in the

transverse direction P. is present in Table I for the complex

modes. Notice that this direction is the only allowed one for

power transmission owing to the nature of the complex mode.

Complex modes in reciprocal waveguides have been widely

analyzed [14] – [17], [19]. These modes have been grouped

together into two pairs with propagation constants +,8 – ja

and ~~ + ja, respectively. Each one of these pairs would

be excited in a discontinuity (with the appropriate sign of

a), with the members of the exited pair strongly coupled

in the energy sense [16]. The presence of complex modes

propagating only in one direction, with propagation constant

~ + ja or (rather than and,) –O + ja, is a direct consequence

of the nonreciprocity of the wave propagation. Therefore, the

pairs of complex modes suggested in [16] have not any sense

here because there are not two different and opposite values for

the real part of the propagation constant among the complex
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solutions. Assuming that nonreciprocal complex modes are 20 -
Y

--------

excited in a discontinuity of a nonreciprocal waveguide, it

- &-?\

,.-,/
x ,,’

is expected that each member of the single pair of NCW ~ 10 -z
,’

present in the waveguide could be excited separately (with the HO J,/ ‘.

appropriate sign of the attenuation constant a). Nevertheless, $ ,’ ‘.-. ----------,’

despite of the presence df a single complex wave of the pair at u o ,/I I

Y
‘1

the discontinuity, there is not any contradiction concerning the ‘.L ‘,
energy associated to this wave since power flux computations <

Qa-lo – e=90°
have made it evident that the same amount of power flows

Freq=3.45 GHz.
in opposite directions through the ferrite and the dielectric ... .

layers in NCW. A similar result was previously reported in –20 ---,---1 I 4

[15] for reciprocal complex modes propagating in rectangular o 30 60
d

90

dielectric image guides.

Fig. 8 shows the effect of the height of the ferrite layer on

the propagation characteristics of the analysed complex mode.

Thus, it can be observed that the propagation constant of the

complex wave remains almost unchanged when the height of

the ferrite layer increases above 5 mm, approximately. This

fact suggests that the complex waves are mainly associated to

the ferrite-dielectric interface. This very interpretation is also

provided by the analysis of the transmitted power through the

ferrite layer. This quantity remains practically unchanged when

the ferrite layer thickness increases above 5 mm. Nevertheless,

the effect of the ferrite layer thickness is significant for

thin ferrite layers: the complex wave disappear below about

0.145 mm. Another mode also appears in the figure when the

ferrite-layer height is above 0.3 mm approximately. This mode

starts being a FMW to turn into a FEW when height increases.

The effects of the dielectric permittivity of the dielectric

layer have also been analyzed although they will not be

shown. It has been found that the qualitative behavior of

the fields is not significantly affected by this parameter.

Fig. 9 shows the effect of the dielectric layer height on the

propagation constants of the two nonreciprocal fundamental

modes appearing at 3.45 GHz with O = 34°. Note that the

upper ground plane distance strongly affects the behavior of

the fields when the dielectric height is below about 0.8 mm.

In turn, this distance hardly affects for heights above 0.8 mm.

Fig. 10 displays the variations of the propagation constant of

a symmetrical three-layers (dielectric-ferrite-dielectric) wave-

Fig. 10. Normalized phase constant ~/ko :( ) and attenua-
tion factor @ :(– – – – –) in dB/mm in a parallel-plate waveguide with
hd,l = 0.25 mm, hf = 0.4 mm, hd,z = 0.25 mm, e~,l = 12.5, l~d,z,
ef = 14.5, 47rMs = 1600 G, HO = 500 Oe, @ = 90°.

guide (hd,l = hd,z in Fig. 2) at 3.45 GHz when the direction

of the internal dc magnetization changes in the x – z plane

(0 = 900). The wave propagation is reciprocal, because the

guide, including the dc magnetic biasing field, has inversion

symmetry with respect to any point at the horizontal midldle

plane. Two pairs of reciprocal complex waves RCW appear

now at certain intermediate values of the azimuthal angle. A

comparison with the two-layers configuration shows that the

real part of the complex propagation constant of the RCW

does not go to zero smoothly when 4 increases (see Fig. 6).

In turn, the real part of k. goes steeply to zero, each pair

of reciprocal complex modes giving rise to two evanescent

reciprocal waves. This latter result is in agreement with the

aforementioned theorem [21] for reciprocal and nonrecipro-

cal nonpropagating modes in gyromagnetic inhomogeneously

filled waveguides, namely, reciprocal purely evanescent modes

are allowed, but nonreciprocal purely evanescent ones are

forbidden and must be complex for all frequencies.

IV. CONCLUSIONS

We have presented a systematic method to obtain the prclpa-

gation characteristics of electromagnetic waves propagating in
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bianisotropic multilayered parallel plate waveguides. Special

care has been paid to the obtaining of the dispersion relation of

the waveguide in terms of the complex roots of an analytical

function. An efficient integral method is then employed to

find these complex zeros. This method makes it possible to

overcome all the drawbacks regarding the handling of meso-

morphic functions. Following the aforementioned searching

procedure, all the complex propagation constants lying within

a given region of the complex plane can be readily obtained.

A systematic procedure to compute the power flow has also

been developed.

The method developed here to solve the characteristic

equation and to obtain the transmitted power has been used

to investigate the modal spectrum of lossless parallel-plate

waveguides loaded with ferrite layer arbitrarily magnetized.

This investigation has been restricted to the analysis of uniform

modes, i.e., modes that propagate along a given direction in

the plane of the waveguide, being uniform in the direction

orthogonal to propagation. The numerical results have been

checked both with previous one reported in the literature and

with those obtained by solving the magnetostatic approach

formulas (assumed to be valid). A good agreement has been

found in all cases. Nevertheless, the comparison with previous

results has been restricted to propagating modes only since no

previous information about complex modes in this type of

waveguides has been found.

The numerical investigation has revealed that the transition

between forward and backward waves always leads to the

appearance of a complex wave. In case the magnetostatic

approach is assumed to be valid, the complex propagation

constant of magnetostatic complex modes can be calculated

by using the analytical extension to the complex plane of

the magnetostatic implicit dispersion relation for propagating

waves. When the forward and backward modes are nonrecip-

rocal, the resulting complex modes are equally nonreciprocal,

appearing as a pair of waves with an exp( –jlcz z)-dependence

with complex conjugate propagation constants kz and k:.

In two-layers ferrite-dielectric parallel plate waveguides, it

has been found that he fundamental electromagnetic mode be-

comes complex when the waveguide is subjected to an oblique

dc magnetization. Such a transformation of the propagating

fundamental mode into a complex mode has been observed

at frequencies included within the forbidden frequency range

for wave propagation in an infinite lossless ferrite medium. It

has also been found that a complex mode in such two-layer

structures appears and disappears turning into forward and

backward propagating waves. Nonreciprocal purely evanescent

modes are not present in the investigated waveguides. AU the

nonreciprocal modes that do not carry a net average power

flux in the direction of the phase propagation are complex

modes. This latter result is in agreement with previous results

reported by the authors [21].

Power computations have shown that power flux through the

dielectric layers is always in the same direction as the phase

propagation. On the contrary, the power flux of complex and

backward waves through ferrite layers occurs in the opposite

direction to the phase propagation. The total power transmitted

by complex modes is found to be null in the direction of the

phase propagation.

The aforementioned transformation of the fundamental

modes in complex waves has also been found in reciprocal

dielectric-ferrite-dielectric waveguides magnetized at an

oblique direction. These modes show complex reciprocal

propagation constants of the type k= = +~ + ji~. Since the

wave propagation is reciprocal, reciprocal evanescent modes

are also present together with the reciprocal complex modes.

APPENDIX A

It is a well known fact from the diffraction theory that if

~(r) is a function that satisfies the Helmholtz equation inside

a closed surface S and if @ and (d/dn)@ are zero over a

finite part of S, then @ is zero at all points of the space

enclosed by S [27]. This theorem shows that if n x E and

n x H are zero on a finite part of a closed surface enclosing a

homogeneous, isotropic, and source-free region, all the fields

are zero at all points inside this region. To extend this theorem

to homogeneous but anisotropic media, we can proceed as

follows:

Theorem: Let a source-free bianisotropic homogeneous

medium bounded by a closed surface S. If n x E and n x H

are assumed to be zero on a finite surface S1 c S, then E

and H are zero at any points enclosed by S.

Proof Let PI (z, y, z) be a point on S’l (see Fig. 11).

From the Maxwell equations it is followed for the normal

component of the 13(Pl ) fields that

If the constitutive relation written in the coordinate system

(u, v, n), i.e.,

[:1““’[:] (19)

is combined with the starting hypothesis taking into account

(18), the second and fifth equaitons in (19) are rewritten as:

giving rise to

E.= H.=0 (21)

assuming the determinant in (20) is not zero. Thus, incorpo-

rating (21) in (19) and taking into account that n x E = O

and n x H = O on S1, it follows that

E(P1) = D(P1) = H(P1) = EI(P1) = O. (22)

Since surface S1 is jinite, all the field tangential derivatives of

any order are also cancelled, that is

(23)
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s

Fig. 11. A closed surface enclosing a bianisotropic

medium.
and homogeneous

where Ai (Pl ) ( 1 s z < 6) Stands for one of the six component

of the [D, 13] or [~, H] field.

Owing to the Maxwell equations are linear equations of first

order, the normal derivative of any field is given by:

with Pil, Qij, and Rij being constants that depend on the
characteristics of the medium. It is obvious from (24) that

any normal field derivative or order q can be expressed in

terms of the fields and its tangential derivative of orders

1,2,..., q. Hence, all the normal field derviatives together

with any crossfield derivative are null provided S1 is finite

(25)

Let P(z, y, z) be an arbitrary point inner to S. From the

application of the Taylor theorem, the electromagnetic field

in P, Ai (P) can be determined in terms of Ai (Pl ) and

its derivatives. Since the electromagnetic fiejd and all its

derivatives are null in PI, the field in P is null.

Let us now consider that the medium bounded by S is

piece-wise homogeneous. The above theorem shows that the

electromagnetic field is null inside the homogeneous region in

contact with S1. If the tangential continuity of E and H over

the surface bounding this homogeneous region is taking into

account, the successive application of the above theorem leads

to a null field in all the region enclosed by S.

APPENDIX B

In case the layer considered does not have optic activity

([dli = 0,[p]i= 0)andL = O, [N”] and [No] matrices are
given by

[Nz] =

[Nz] =

[

o 00 J%
we22

o 00 0

(27)

where p~.t and c~.1k, 1 = 1,2,3 stand for the orthogonal

comporients of the’ constitutive tensors [~,] and [q] in the

considered coordinate system (x, y, z), and the superscript ‘

stands for the complex conjugate.
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